Tubes

for flexible coolant hoses, technopolymer

MATERIAL

Acetal-based technopolymer (POM), blue.

STANDARD EXECUTIONS

- FHT: modular tubes, pre-assembled in segments.

FHT-C: modular tubes, pre-assembled and wound along a reel.

FEATURES

The modular structure, formed by means of the snap mounting of the individual segments (Fig.1), allows the lubricating jet to be channelled in the desired direction.
The length of the tube can be adapted to the specific application by adding or removing the appropriate number of segments via the snap fitting.
To form a complete coolant hoses, coupling with a nozzle FHN (see page -), and a fitting is required FHJ (see page -) (Fig.2).
Assembled without using seals, the system should therefore not be considered watertight.
Max input pressure: 4 bar (FHT.1/4), 2 bar (FHT.1/2).
See Flexible coolant hoses (on page -).

CHEMICAL COMPATIBILITY

Material resistant to detergents, lubricants and oils, avoid contact with strong acids and bases.
To use fluids other than those listed, contact Elesa's technical department.
In any case we suggest to verify the suitability of the product under the actual working conditions.

SPECIAL EXECUTIONS ON REQUEST

- Tubes made from raw materials suitable for contact with food (FDA CFR. 21 and EU 10/2011).
- Tubes with a diameter of 3/4".

ACCESSORIES ON REQUEST

Pliers to assemble the components.

FHT

Code	Description	L	d1	d2	d3 min.	11	For coolant hoses	Number of segments	$\Delta \Delta$
471201	FHT.1/4	308.5	16	7	48.5	15.1	1/4	20	42
471206	FHT.1/2	320.5	26	12	59	19.5	1/2	16	91

FHT-C

Code	Description	L	d1	d2	d3 min.	In	For coolant Number of hoses segments	d
471202	FHT.1/4-C-7500	7500	16	7	48.5	15.1	$1 / 4$	495
471207	FHT.1/2-C-7500	7500	26	12	59	19.5	$1 / 2$	384

